Molecular-dynamics simulations of urea nucleation from aqueous solution.

نویسندگان

  • Matteo Salvalaglio
  • Claudio Perego
  • Federico Giberti
  • Marco Mazzotti
  • Michele Parrinello
چکیده

Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PNAS Plus Significance Statements Molecular-dynamics simulations of urea nucleation from aqueous solution

Nucleation from solution is a ubiquitous process that plays important roles in physics, chemistry, engineering, and material science. Despite its importance, nucleation is far from being completely understood. In this work (pp. E6–E14), we combine advanced molecular-dynamics simulation techniques and theory to provide a description of urea nucleation from aqueous solution. In particular, our an...

متن کامل

Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution.

We probe the urea-denaturation mechanism using molecular dynamics simulations of an elementary "folding" event, namely, the formation of end-to-end contact in the linear hydrocarbon chain (HC) CH(3)(CH(2))(18)CH(3). Electrostatic effects are examined using a model HC in which one end of the chain is positively charged (+0.2e) and the other contains a negative charge (-0.2e). For these systems m...

متن کامل

Aqueous urea solution destabilizes A 16–22 oligomers

We use long multiple trajectories generated by molecular dynamics simulations to probe the stability of oligomers of A 16–22 (KLVFFAE) peptides in aqueous urea solution. High concentration of urea promotes the formation of -strand structures in A 16–22 monomers, whereas in water they adopt largely compact random coil structures. The tripeptide system, which forms stable antiparallel -sheet stru...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Urea impedes the hydrophobic collapse of partially unfolded proteins.

Proteins are denatured in aqueous urea solution. The nature of the molecular driving forces has received substantial attention in the past, whereas the question how urea acts at different phases of unfolding is not yet well understood at the atomic level. In particular, it is unclear whether urea actively attacks folded proteins or instead stabilizes unfolded conformations. Here we investigated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 1  شماره 

صفحات  -

تاریخ انتشار 2015